Final Exam-MATH 413-(Complex Analysis)

Saturday 25\2\1435H 1st Semester – 2 Hours

Dr. Abeer Badghaish

Name:_____

Co:

Q1# Answer True or False:

1- $Log(z) = ln z + i\theta$, $(-\pi < \theta < \pi)$ is the Principle branch of log(z)()
2- A function that is analytic for all $z \in C$ is called singular function()
3- If $z \in C - \{0\}$, then $e^{\log z} = z$ for any value of the function log z()
4- $ i^3 = i$)
5- $f(z) = \frac{1}{1-z^2}$ has Maclaurin series given by $f(z) = 1 + z^2 + z^4 + \cdots$,()
6- z_0 is an isolated singular point if f is analytic in the deleted neighborhood of the	
point <i>z</i> ₀ ()
7- $\overline{z_1 \cdot \overline{z_2}} = \overline{z_1} \cdot \overline{z_2}$ ()
8- If a function is analytic through a simply connected domain D, then for every	
closed contour C lying in D, $\int_{\mathcal{C}} f(z) dz = 2\pi i$ ()

Q2# Fill the blanks

- 1- The n^{th} root of $z_0 = r_0 e^{i\theta_0}$ is z =_____.
- 2- If z = 1 + i then $z^{-1} =$ ______
- 3- The function $f(z) = \frac{1}{z^2+3}$ has two singular points at $z = _$ and $z = _$
- 4- If $\lim_{z \to z_0} f(z) = L$. Then $\lim_{z \to z_0} |f(z)| =$ _____.

5- An isolated singular point z_0 of a function f is a pole of order m iff f(z) can be written as f(z) =______, where $\emptyset(z)$ is analytic nonzero at z_0 . Moreover, for $m \ge 2$, $\operatorname{Res}_{z=z_0} f(z) =$ _____. 6- Let C be a simple closed contour in positive sense. If f(z) is analytic inside and on C except for finite number of singular points z_k (k = 1, 2, ..., n) inside C, then

$$\int_{C} f(z)dz = _$$

7- Let two functions p and q be analytic at a point z_0 . If $p(z_0) \neq 0$, $q(z_0) = 0$, $q'(z_0) \neq 0$, then z_0 is a simple pole of p/q and

$$\operatorname{Res}_{z=z_0} \frac{p(z)}{q(z)} = \underline{\qquad}$$

Q3# For z = x + iy show that if the function f(z) satisfy Cauchy-Riemann equations or does not satisfy it:

a-
$$f(z) = e^{-x}(x \sin y - y \cos y),$$
 b- $f(z) = Im(z)$

<u>Q4#</u> The following functions has singular point at z = 0

$$f(z) = \frac{1 - \cos z}{z^2}, \qquad \qquad g(z) = \frac{\sin z}{z}$$

- **a-** Expand the functions about z = 0
- **b** What is the type of the singular point z=0

<u>Q5#</u> Find the series expansion of the function

$$f(z) = \frac{1}{z-3}$$

a- If |z| < 3,

b- If |z| > 3.

<u>Q6#</u> Show that the function $f(z) = \frac{1}{z}$ has the series expansion $\frac{1}{z} = -\sum_{k=1}^{\infty} \frac{(z+2)^k}{2^{k+1}} , \quad if \ |z+2| < 2$ **<u>Q7#</u>** Find the **Residue** of the following functions at z = 0:

a- $f(z) = \frac{z^2+1}{z}$ [Hint: you can use the theorem in Q2(7)]

b-
$$f(z) = \frac{z^3 + i}{z^4}$$
 [Hint: you can use the theorem in **Q2**(5)]

<u>Q8#</u> Evaluate

$$\int_C \frac{z+1}{z^2 - 2z} dz$$

where C is the circle |z|=3 [Hint: you can expand the function about its singular points, then use the theorem in **Q2**(6)]