Saturday $25 \backslash 2 \backslash 1435 \mathrm{H} 1^{\text {st }}$ Semester -2 Hours

Dr. Abeer Badghaish

Name: \qquad Co: \qquad

Q1\# Answer True or False:

1- $\log (z)=\ln |z|+i \theta, \quad(-\pi<\theta<\pi)$ is the Principle branch of $\log (z) \ldots \ldots \ldots$.
2- A function that is analytic for all $z \in C$ is called singular function. \qquad .. (

3- If $z \in C-\{0\}$, then $\quad e^{\log z}=z$ for any value of the function $\log z$. \qquad ()

4- $\quad\left|i^{3}\right|=i$ \qquad ()

5- $f(z)=\frac{1}{1-z^{2}}$ has Maclaurin series given by $f(z)=1+z^{2}+z^{4}+\cdots, \ldots \ldots \ldots$. ((

6- z_{0} is an isolated singular point if f is analytic in the deleted neighborhood of the point z_{0} \qquad
7- $\overline{z_{1} \cdot \overline{z_{2}}}=\overline{z_{1}} \cdot \overline{z_{2}}$ \qquad
8- If a function is analytic through a simply connected domain D, then for every closed contour C lying in $\mathrm{D}, \int_{C} f(z) d z=2 \pi i$. \qquad

Q2\# Fill the blanks

1- The $n^{\text {th }}$ root of $z_{0}=r_{0} e^{i \theta_{0}}$ is $z=$ \qquad _.

2- If $z=1+i$ then $z^{-1}=$ \qquad
3- The function $f(z)=\frac{1}{z^{2}+3}$ has two singular points at $z=$ \qquad and $Z=$ \qquad
4- If $\lim _{z \rightarrow z_{0}} f(z)=L$. Then $\lim _{z \rightarrow z_{0}}|f(z)|=$ \qquad -

5- An isolated singular point z_{0} of a function f is a pole of order m iff $f(z)$ can be written as $f(z)=$ \qquad where $\emptyset(z)$ is analytic nonzero at z_{0}.
Moreover, for $m \geq 2, \quad \operatorname{Res}_{z=z_{0}} f(z)=$ \qquad -.

6- Let C be a simple closed contour in positive sense. If $f(z)$ is analytic inside and on C except for finite number of singular points $z_{k}(k=1,2, \ldots n)$ inside C , then

$$
\int_{C} f(z) d z=
$$

7- Let two functions p and q be analytic at a point z_{0}. If $p\left(z_{0}\right) \neq 0, q\left(z_{0}\right)=0$, $q^{\prime}\left(z_{0}\right) \neq 0$, then z_{0} is a simple pole of p / q and

$$
\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=
$$

Q3\# For $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ show that if the function $f(\mathrm{z})$ satisfy Cauchy-Riemann equations or does not satisfy it:
a- $f(z)=e^{-x}(x \sin y-y \cos y)$,
b- $f(z)=\operatorname{Im}(z)$

Q4\# The following functions has singular point at $z=0$

$$
f(z)=\frac{1-\cos z}{z^{2}}, \quad g(z)=\frac{\sin z}{z}
$$

a- Expand the functions about $z=0$
b- What is the type of the singular point $z=0$

Q5\# Find the series expansion of the function

$$
f(z)=\frac{1}{z-3}
$$

a- If $|z|<3$,
b- If $|z|>3$.

Q6\# Show that the function $f(z)=\frac{1}{z}$ has the series expansion

$$
\frac{1}{z}=-\sum_{k=1}^{\infty} \frac{(z+2)^{k}}{2^{k+1}}, \text { if }|z+2|<2
$$

Q7\# Find the Residue of the following functions at $\boldsymbol{z}=\mathbf{0}$:
a- $f(z)=\frac{z^{2}+1}{z} \quad$ [Hint: you can use the theorem in Q2(7)]
b- $f(z)=\frac{z^{3}+i}{z^{4}}$
[Hint: you can use the theorem in Q2(5)]

Q8\# Evaluate

$$
\int_{C} \frac{z+1}{z^{2}-2 z} d z
$$

where C is the circle $|z|=3$ [Hint: you can expand the function about its singular points, then use the theorem in Q2(6)]

